A Generic Approach for Error Estimation of Depth Data from (Stereo and RGB-D) 3D Sensors
نویسندگان
چکیده
We propose an approach for estimating the error in depth data provided by generic 3D sensors, which are modern devices capable of generating an image (RGB data) and a depth map (distance) or other similar 2.5D structure (e.g. stereo disparity) of the scene. Our approach starts capturing images of a checkerboard pattern devised for the method. Then proceed with the construction of a dense depth map using functions that generally comes with the device SDK (based on disparity or depth). The 2D processing of RGB data is performed next to find the checkerboard corners. Clouds of corner points are finally created (in 3D), over which an RMS error estimation is computed. We come up with a multi-platform system and its verification and evaluation has been done, using the development kit of the board nVIDIA Jetson TK1 with the MS Kinects v1/v2 and the Stereolabs ZED camera. So the main contribution is the error determination procedure that does not need any data set or benchmark, thus relying only on data acquired on-the-fly. With a simple checkerboard, our approach is able to determine the error for any device. Envisioned application is on 3D reconstruction for robotic vision, with a series of 3D vision sensors embarked in robots (UAV of type quadcopter and terrestrial robots) for high-precision map construction, which can be used for sensing and monitoring.
منابع مشابه
مدلسازی صفحهای محیطهای داخلی با استفاده از تصاویر RGB-D
In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in f...
متن کاملReal-time dense appearance-based SLAM for RGB-D sensors
In this work a direct dense approach is proposed for real-time RGB-D localisation and tracking. The direct RDB-D localisation approach is demonstrated on a low cost sensor which exploits projective IR light within indoor environments. This type of device has recently been the object of much interest and one advantage is that it provides dense 3D environment maps in real-time via embedded comput...
متن کاملSubmap-Based Bundle Adjustment for 3D Reconstruction from RGB-D Data
The key contribution of this paper is a novel submapping technique for RGB-D-based bundle adjustment. Our approach significantly speeds up 3D object reconstruction with respect to full bundle adjustment while generating visually compelling 3D models of high metric accuracy. While submapping has been explored previously for mono and stereo cameras, we are the first to transfer and adapt this con...
متن کاملIR Stereo Kinect: Improving Depth Images by Combining Structured Light with IR Stereo
RGB-D sensors such as the Microsoft Kinect or the Asus Xtion are inexpensive 3D sensors. A depth image is computed by calculating the distortion of a known infrared light (IR) pattern which is projected into the scene. While these sensors are great devices they have some limitations. The distance they can measure is limited and they suffer from reflection problems on transparent, shiny, or very...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017